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We derive a one-dimensional energy diffusion equation for describing the dynamics of multidimensional
electron transfer reactions in condensed phase, which is conceptually simpler and computationally more
economic than the conventional approaches. We also obtain an analytical expression for the rate of electron
transfer reactions for a general one-dimensional effective potential as well as an energy dependent diffusitivity.
As an illustrative example, we consider application to electron transfer in a contact ion pair system modeled
through harmonic potentials consisting of two slow classical modes and a high frequency vibrational mode
for which the numerical results calculated using the proposed one-dimensional approach are shown to be in
good agreement with experimental results. The energy diffusion equation and the rate expression for electron
transfer obtained from the present theory, therefore, open up the possibility of describing the dynamics of
electron transfer in complex systems, through a simpler approach.

I. Introduction

Electron transfer (ET) reactions in condensed phase have been
one of the most thoroughly investigated processes over the past
decade. Recent years have witnessed an upsurge of experimental
investigations on ET processes due to availability of spectro-
scopic techniques for dynamical measurements and the synthesis
of tailor-made artificial electron donor-acceptor systems which
have led to a wealth of new experimental results. In the
traditional ET theory of Marcus,1 it is assumed that the state,
from which reaction occurs, is always in thermal equillibrium
which is unperturbed by the reaction. In this theory, the ET
rate constant depends on static aspects of the solvent effects
but not explicitly on the dynamics of the solvent. The theory
works well in many situations involving particularly the
nonadiabatic ET processes where the electronic coupling
between the localized reactant and product states is sufficiently
weak and the ET rate is directly proportional to the electronic
coupling. However, in many ET reactions, involving particularly
the electronically adiabatic regime, the electronic coupling is
sufficiently large and the solvent dynamical effects are very
much pronounced. The work of Zusman,2 Calef and Wolynes3

and the unified approach of Hynes4–7 have extended Marcus
theory to treat the dynamics of ET reactions and to investigate
the role of solvent dynamics in adiabatic ET. But in all these
theories the effect of nonequilibrium aspects on the rate of ET
reaction has not been taken into consideration. There are many
situations e.g. photochemical ET reactions8,9 where the system
is initially in a nonequilibrum configuration rather than an
equilibrium one. One usually proposes a model in which the
system is assumed to be in the ground state and is brought to

the nonequilibrium excited state by laser excitation. Subse-
quently, the ion pair formed at the higher level of excitation
relaxes downward to the potential minimum of the excited-state
surface due to relaxation of the polar solvent till its energy
coincides with that of the ground state, when back ET reaction
takes place. Thus, the ET reaction can occur from a completely
nonequilibrium condition. Therefore, the main assumption in
the Marcus theory that the initial distribution of the system is
an equilibrium one may not hold for this system which leads to
a marked deviation from the expected bell-shaped dependence
of the logarithmic rate on the free energy gap (∆G). Such
deviation is referred to as the non-Marcus free energy gap (FEG)
dependence of the rate. To explain the non-Marcus FEG
dependence of the rate of ET reactions, one usually invokes a
mechanism based on an interplay between solvent relaxation
dynamics and electron transfer.

The ET reactions in general are associated with intrinsic
multidimensional potential energy surfaces,10 physical examples
of which include bond breaking ET,11 ET in a non-Debye
solvent,12 low frequency vibrational and solvent polarization
mediated ET13 etc. A multidimensional space description, based
on Smoluchowski equation, is very cumbersome and highly
involved, and hence a simpler description, such as a one-
dimensional one for these multidimensional processes, is very
important and significant. In our earlier work,14 we have
addressed a generalized one-dimensional energy diffusion
approach for describing the dynamics of multidimensional
processes in condensed phase. On the basis of a formalism
originally due to Zwanzig, we obtained a one-dimensional
kinetic equation for a properly selected relevant dynamical
quantity and derived new analytical results for the dynamics of
a multidimensional nonequilibrium solvation and diffusive
escape from a potential well. We also derived a one-dimensional
energy diffusion equation for a properly selected reaction
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coordinate for ET reactions and obtained an analytical expres-
sion for the ET rate constant where the effective potential is
harmonic and the diffusivity is independent of the reaction
cordinate. However, the rate expression cannot be easily derived
in the same way as shown in our earlier work14 if one considers
a general effective potential and a reaction coordinate-dependent
diffusivity in the kinetic equation. In this work, therefore, we
have proposed an alternative approach to derive an analytical
expression for the rate of ET reactions for a general effective
potential and an energy-dependent diffusivity.

The organization of the rest of the paper is as follows. In the
following section (section II), we derive the one-dimensional
energy diffusion equation for multidimensional ET reactions.
We then derive an analytical expression for the ET rate constant
for a general effective potential and an energy-dependent
diffusivity. In sections III and IV, as an illustrative example,
we apply the proposed formalism to an ET reaction in a contact
ion pair system modeled through harmonic potentials consisting
of two slow classical modes and a high frequency vibrational
mode where the system is prepared initially in a nonequilibrium
state and obtain analytical expressions for the ET rate constant
and the energy-dependent diffusivity. In section V, we present
the calculated results based on the derived analytical expressions
and compare them with experimental results. Section VI
concludes with a brief summary.

II. Theoretical Formalism

The description, which we have proposed recently in an
earlier work,14 is based on a kinetic equation for the probability
distribution P(γ, t|γ0, 0) of a microscopic phase space function
A constrained to have a value γ at time t with its initial value
γ0 at t ) 0, which was originally obtained by Zwanzig15 and
subsequently modified by others and can be written3 as

∂P(γ, t|γ0, 0)
∂t

) ∂

∂γ{∫0

t
D(γ, τ)dτ[∂P(γ, t- τ|γ0, 0)

∂t
+

P(γ, t- τ|γ0, 0)
∂

∂τ{ �Veff(γ)} ]} (1)

Here time- and γ -dependent diffusivity D(γ, t) is defined as
D(γ, t) ) 〈Ȧ(t)˙ Ȧ(0) δ(A(t) - γ)〉/〈δ(A(0) - γ)〉 with the symbol
〈 〉 denoting an equilibrium ensemble average and the dot
corresponding to time derivative. The effective potential Veff, a
function of the γ coordinate, is defined as �Veff(γ) ) -ln (N
〈δ(A(0) - γ)〉), where � ()1/kBT) denotes the inverse temper-
ature and N ) ∫-∞

+∞ dγ exp[-�Veff(γ)]. Here P(γ, t|γ0, 0)
represents the probability of A to have the value γ at time t
when its initial value is γ0 at t ) 0. Zwanzig’s derivation15 of
eq 1 assumes dA/dt to be small as has been discussed by him
in detail. It has been recently shown14 that this single kinetic
equation can form the basis for a unified description of different
dynamical problems through proper identification of the phase
space function A.

In an ET process, the system moving initially on a multidi-
mensional reactant potential energy surface (PES) crosses to
the product PES at the intersection point. The ET reactions do
occur with an intrinsic rate10 k0 (corresponding to γ ) 0), i.e.
when the reactant and product potential energies are equal and
hence the relevant microscopic phase space function A for the
ET reactions can be chosen to be the difference between the
potential energy for the product (VP) and that of the reactant
(VR), viz. A ) VP - VR. Therefore, the kinetic equation for
P(γ, t|γ0, 0) given by eq 1 should be modified for ET reactions

by introducing a delta sink with strength k0 to its right side.
The modified kinetic equation, for ET reactions thus becomes

∂P(γ, t|γ0, 0)

∂t
) ∂

∂γ{∫0

t
D(γ, τ) dτ[∂P(γ, t- τ|γ0, 0)

∂γ
+

P(γ, t- τ|γ0, 0)
∂

∂γ
(�Veff(γ))]}-k0 δ(γ) P(γ, t|γ0, 0) (2)

This is an important result since it provides a one-dimensional
energy diffusion equation of the reactive system. However, the
rate expression for the ET reactions involving energy dependent
diffusivity from the above generalized kinetic equation (eq 2)
cannot be obtained directly based on the method addressed in
our earlier work.14 We propose here altogether a different
method to obtain an analytical expression for the rate of ET
reactions. We start with eq 2 which, in the Markovian limit,
can be rewritten as

∂P(γ, t|γ0, 0)

∂t
) ∂

∂γ{ D(γ)[∂P(γ, t|γ0, 0)
∂γ

+

P(γ, t|γ0, 0)
∂

∂γ(�Veff(γ))]} - k0 δ(γ)P(γ, t|γ0, 0) (3)

where D(γ) is given by

D(γ))∫0

∞
dt D(γ, t) (4)

The quantity of interest here is the mean passage time τ(γ0),
which is defined as

τ(γ0))∫0

∞
dt p(t, γ0) (5)

where p(t, γ0) defines the probability of finding the system at
the reactant surface at time t when the system is initially (t )
0) prepared at γ ) γ0 and can be obtained from P(γ, t|γ0, 0) by
integrating over γ, i.e.

p(t, γ0))∫-∞

+∞
dγP(γ, t|γ0, 0) (6)

In order to have an analytical expression for τ(γ0), what we
need is a differential equation for the function p(t, Z0). But it is
clear from eqs 3 and 6 that it is not possible to obtain an equation
for p(t, γ0) by merely integrating both sides of eq 3 over γ.
Therefore, it will be advantageous if one can write a differential
equation equivalent of eq 3 in the variable γ0. This is indeed
possible by using the substitution

P(γ, t|γ0, 0)) exp[-�Veff(γ)] U(γ, t|γ0, 0) (7)

in eq 3 along with the reciprocity relation16–18

U(γ, t|γ0, 0))U(γ0, t|γ, 0) (8)

which leads, after some algebra, to the differential equation

∂P(γ, t|γ0, 0)
∂t

) exp[�Veff(γ0)]
∂

∂γ0
[D(γ0)exp[-�Veff(γ0)] ×

∂P(γ, t|γ0, 0)
∂γ0

] - k0δ(γ0)P(γ, t|γ0, 0) (9)

Now integrating both sides over γ, one obtains

∂p(t, γ0)

∂t
) exp[�Veff(γ0)]

∂

∂γ0
[D(γ0) exp[-�Veff(γ0)] ×

∂p(t, γ0)

∂γ0
] - k0 δ(γ0) p(t, γ0) (10)

which, on further integration over time, and using the boundary
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condition p(0, γ0) ) 1, leads to the differential equation

exp[�Veff(γ0)]
∂

∂γ0
[D(γ0) exp[-�Veff(γ0)]

∂τ(γ0)

∂γ0
] -

k0 δ(γ0) τ(γ0))-1 (11)

Integrating both sides over γ0 for γ0 > 0, we obtain

∂τ(γ0)
∂γ0

)
exp[�Veff(γ0)]

D(γ0) [C-∫γ0 dγexp[-�Veff(γ)]] (12)

where C is an arbitrary constant of integration, which can be
evaluated, for example, by employing a boundary condition
defined as

[(∂τ(γ0)

∂γ0
)

(0+ε)
- (∂τ(γ0)

∂γ0
)

0
] ) k0

2D(0)
τ(0) (13)

where ε is a very small positive number.
In order to obtain an analytical expression for τ(0) we first

write an exact Green’s function solution19 of eq 3 as

P(γ, t|γ0, 0))P0(γ, t|γ0, 0)-

k0∫0

t
dt′P0(γ, t- t′|0, 0) P(0, t′|γ0, 0) (14)

where the function P0(γ, t|γ0, 0) is the solution of eq 3 in absence
of the sink term. Both P(γ, t|γ0, 0) and P0(γ, t|γ0, 0) correspond
to the same initial condition, which we consider here to be
P(γ, t) ) P0(γ, t) ) δ(γ - γ0) at t ) 0. Taking the Laplace
transform of eq 14 and after rearrangement we obtain

P̃(0, s|γ0, 0))
P̃0(0, s|γ0, 0)

1+ k0P̃0(0, s|0, 0)
(15)

where

P̃(γ, s|γ0, 0))∫0

∞
dt exp[-st]P(γ, t|γ0, 0) (16)

Now integrating eq 14 over γ, taking the Laplace transform of
the resulting equation and finally combining with eq 15, we
obtain

p̃(s, γ0))
1+ k0[P̃0(0, s|0, 0)- P̃0(0, s|γ0, 0)]

s[1+ k0P̃0(0, s|0, 0)]
(17)

Since k-1 ) τ(γ0) ) lim sf0P̃(s, γ0), we obtain from eq 17 the
result

k-1 ) 1
k0Pst(0)

+
∫0

∞
dt[P0(0, t|0, 0)-P0(0, t|γ0, 0)]

Pst(0)
,

(18)

where Pst(0) ) P0(0, ∞|0, 0). In eq 18, by substituting γ0 ) 0,
we obtain the desired expression given by

τ(0)) 1
k0Pst(0)

(19)

Here Pst(0) represents the stationary distribution in the variable
γ ) 0 and is given by

Pst(0))
exp[-�Veff(0)]

∫-∞

∞
dγexp[-�Veff(γ)]

(20)

By combining eqs 12, 13 and 20, we obtain an expression for
C, given by

C) 1
2∫-∞

∞
dγ exp[-�Veff(γ)] (21)

Now integrating both sides of eq 12 from 0 + ε to γ0 and taking
the limit εf0, we obtain

τ(γ0)) τ(0)+∫0

γ0 dγ
exp[�Veff(γ)]

D(γ)
[C-

∫γ
dγ′ exp[-�Veff(γ

′)]] (22)

which is an important new result for the mean passage time
τ(γ0). The overall ET rate constant k is defined as the reciprocal
of the mean passage time τ(γ0) () k-1). It can also be written
as

k-1 ) kTST
-1 + kd

-1 (23)

where kTST () 1/τ(0)) represents the rate calculated based on
the transition state theory (TST)1 and kd is the rate for well
dynamics defined below as

kd
-1 )∫0

γ0 dγ
exp[�Veff(γ)]

D(γ) [C-∫γ
dγ ′ exp[-�Veff(γ ′ )]]

(24)

If one neglects the effect of energy dependent diffusivity and
considers the effective potential �Veff(γ) to be harmonic, eq 22
reduces to the rate expression shown in the earlier works.14,20

Therefore, the analytical expression for ET reactions derived
here is more general. It may also be noted that if one assumes
D(γ) to depend weakly on γ in eq 3, the present one-dimensional
description of a multidimensional ET can be shown by proper
coordinate transformation to be identical to the Zusman equa-
tion2 for forward ET reaction proposed earlier only for one-
dimensional process.

III. Nonequilibrium Electron Transfer

As an illustrative example, we now consider a typical ET
reaction, where a molecule DA is excited from the ground state
with an ultrashort laser pulse, leading to the formation of the
ion-pair D+A-. Thus, the ion-pair is initially produced in a
completely nonequilibrium configuration and then relaxes
downward along its potential energy surface (corresponding to
D+A-) through relaxation of the surrounding polar solvent till
it meets the PES of the molecule DA, where the back ET
reaction takes place. We consider here a simple theoretical
model for the ET system of interest consisting of a multidi-
mensional space spanned by the low frequency solvent polariza-
tion (X) and the vibrational coordinate21 (Q) or two low
frequency solvent collective coordinates.12 Therefore, for the
back ET reaction D+A- f DA, we consider a standard low
frequency harmonic oscillator model12,21 potential for D+A- and
DA systems defined respectively as

VR(Q, X, nR)) 1
2

Q2 + 1
2

X2 + nRhνq (25)

and

VP(Q, X, nP)) 1
2

(Q-Q0)
2 + 1

2
(X-X0)

2 +∆G+ nPhνq,

(26)

and the phase space function A(t) is given by

A(t)) λT + (nP - nR)hνq +∆G- (XX0 +QQ0) (27)

Here, the total reorganization energy λT() λv + λs) is contributed
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by the low frequency vibrational and solvent reorganization
energy λv ) (1/2)Q0

2 and λs ) (1/2)X0
2 respectively, while ∆G

represents the free energy change of the ET reaction and νq is
the frequency for the high-frequency vibrational mode with the
quantum numbers nR and nP referring to the reactant and product,
respectively. For this model, the effective potential Veff(γ) can
be expressed as

�Veff(γ)) [� ⁄ (4λT)][λT +∆G+ (nP - nR)hνq - γ]2

(28)

and the diffusivity D(γ, t) is given by

D(γ, t))
(Q0)2 < Q

˘
(t)Q

˘
(0)δ(A(t)- γ)>

<δ(A(0)- γ)> +

X0
2 < X

˘
(t)X

˘
(0)δ(A(t)- γ)>

<δ(A(0)- γ)> . (29)

Here, for evaluating the mean potential �Veff(γ), an ensemble
average has been evaluated with respect to the reactant potential
energy surface, since ET is considered to occur from the reactant
surface to the product surface and in obtaining eq 29 for D(γ, t),
the cross velocity contribution has been assumed to be small.
Now using the variable Z ) [λT + ∆G + (nP - nR)hνq - γ],
one can write the two-dimensional Smoluchowski equation

∂P(Z, t|Z0, 0)

∂t
) ∂

∂Z{ D(Z)[∂P(Z, t|Z0, 0)

∂Z
+

P(Z, t|Z0, 0)
∂

∂Z
(�Veff(Z))]} - k0δ(Z- Z*) P(Z, t|Z0, 0)

(30)

and considering the model potential �Veff ) (�/4λT)Z2, obtain
the analytical rate expressions for kd

-1 and kTST
-1 ()τ(Z/)) given

respectively as

kd
-1 ) (πλTkBT)1⁄2∫Z*

Z0
dZ

exp[Z2 ⁄ (4λTkBT)] [1- erf(Z ⁄ (4λTkBT)1⁄2)]

D(Z)

(31)

and

kTST
-1 ) k0

-1(4πλTkBT)1⁄2 exp[ (λT +∆G+ (nP - nR)hνq)2

4λTkBT ]
(32)

where erf(Z) represents the error function. Here Z/ ) λT + ∆G
+ (nP - nR)hνq at γ ) 0, Z0 ) 2λT at γ ) γ0 (t ) 0) and ∆G
stands for the free energy change of charge recombination
reactions. k0 is the instrinsic reaction rate between the initial
nR-th and the final nP-th vibrational states of the reactant and
the product. The expression for k0 can be written, using the
Franck-Condon factor,22 as

k0 ) exp(-S)nR ! nP ! ×

[ ∑
r)0

min(nR,nP)
(-1)nR+nP-rS(nR+nP-2r)⁄2

r ! (nR - r) ! (nP - r)! ]2

Vel
2 (33)

where the electron-vibrational coupling strength is S ) λh/hνq

with λh as the reorganization energy for the high frequency mode
and the electronic coupling matrix element Vel is given in terms
of the transfer integral J as Vel

2 ) (4π2/h)J2. Equations 23, 31
and 32 are used here to study the rate of ET reactions.

It may also be noted that analytical results for the ET rate
constant k cannot be obtained by directly solving the two-
dimensional Smoluchowski equation and in fact, the difficulty
for numerical evaluation through this equation increases drasti-
cally with increasing the dimensionality. On the contary, the
investigation of two-dimensional ET as a one-dimensional
problem, as shown here, leads to an analytical expression for
the rate constant. The investigation of two-dimensional ET as
a one-dimensional problem leading to an analytical expression
for the rate constant, as shown here, is only illustrative and it
is straightforward to use the present approach to formulate the
treatment of ET reactions involving more than two-dimensional
space as a one-dimensional problem and obtain analogues of
eqs 3 and 22. Although harmonic oscillator model is used in
this work, the theory developed is general and can be applied
to general situation as well.

IV. Evaluation of Energy and Time-Dependent
Diffusivity

In order to study the ET rate constant using eqs 31 and 32,
what we need is an explicit expression for D(Z, t), for which
we first substitute γ ) (λT + (nP - nR)hνq + ∆G) - Z in eq 29
to obtain

D(Z, t))

(Q0)
2〈 Q̇(t) Q̇(0) δ(A(t)+ Z- (λT + (nP - nR)hνq +∆G))〉

〈δ(A(0)+ Z- (λT + (nP - nR)hνq +∆G))〉
+

X0
2〈 Ẋ(t) Ẋ(0) δ(A(t)+ Z- (λT + (nP - nR)hνq +∆G))〉

〈δ(A(0)+ Z- (λT + (nP - nR)hνq +∆G))〉
(34)

We then assume Q(t) and X(t) to decay exponentially with
relaxation times τv and τs respectively and eq 34 thereby
simplifies to

D(Z, t)) 2
�(λT

B )1⁄2 exp[-�Z2 ⁄ (4B)]

exp[-�Z2 ⁄ (4λT)]
× [{λv f1(t) ×

(1 ⁄ τv)2K1}+ {λs f2(t) (1 ⁄ τs)2K2}] (35)

where B, K1 and K2 are given by

B) λvf1
2(t)+ λsf2

2(t) (36)

K1 ) [1-
λvf1

2(t)

B (1- �Z2

2B )] (37)

K2 ) [1-
λsf2

2(t)

B (1- �Z2

2B )] (38)

with f1(t) ) exp(-t/τV) and f2(t) ) exp(-t/τs).

V. Results and Discussion

The rate expression derived here is quite general and involves
the energy dependent diffusivity. We have calculated the rate
constant k of back ET reactons using eqs 23, 31 and 32 for
contact ion pairs (CIP) in acetonitrile solvent as a function of
the free energy change ∆G of the reaction. We assume here
X(t) and Q(t) to decay exponentially with relaxation times τs

and τv respectively. The solvent ralaxation time of acetonitrile
is taken23 as τs ) 0.3 ps at temperature T ) 300 K. For
simplicity, we consider the relaxation time (τv) for the other
mode to be same as τs. We consider here νq ) 1014/s and the
reorganization energy24 for this high frequency mode λh ) 0.893
eV. Since we assume the energy ralaxation in the high frequency
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vibrational mode is very fast, therefore, we consider that after
excitation the system reaches to the lowest vibrational state of
the reactant surface and then back ET reaction takes place with
a rate constant k0. It is clear from eq 33 that the intrinsic rate
decreases with increase in the vibrational quantum number of
the product surface, and therefore, we have considered here only
the rate with maximum contribution, i.e. nR ) 0 and nP ) 1
for the systems D+A- and DA respectively, although contribu-
tion from other vibrational states of the product surface can also
be included. To explain the experimental results for the rate
constant of back ET, Tachiya and Murata16 had considered only
single mode diffusive motion in the X coordinate and used the
reorganization energy λs ) 1.5 eV, but this value is quite high
and cannot be easily rationalized. However, the ET reaction is
multidimensional in nature and the reorganization energy might
be contributed by different modes and not necessarily arise from
one single mode as they have considered in their investigation.
In the present theory of a one-dimentional description of a two-
dimensional ET, the total reorganization energy is contributed
by two modes. For simplicity, we assume an equal contribution
from each of the two slowly relaxing modes X and Q
corresponding to the reorganization energies λs and λv respec-
tively. Figure 1 compares the calculated energy gap dependence
of the rate for the best fitted values of λs ()0.55 eV) and J
()0.1 eV) with the experimental data8 on back ET in CIP based
on the proposed theory and the above approximations. The
numerical values of these parameters used here are much less
than the values taken by Tachiya and Murata16 (λs ) 1.5 eV
and J ) 0.3 eV) and are even less than the values used (λs )
0.75 eV and J ) 0.3 eV) in our previous work.14 However, the
value of J for CIP is reasonably significant as expected and the
back ET reaction occurs with almost unit probability during
the course of the relaxation. Thus, the reaction can occur from
a completely nonequilibrium condition and an interplay between
kTST and kd leads to a non-Marcus FEG dependence of the rate
of the ET reactions, as is clear from Figure 1 and hence, the
total rate of ET reaction is strongly dependent on the initial

nonequilibrium configuration as well as the solvent relaxation
dynamics. Therefore, one can see that the non-Marcus FEG
dependence of the back ET process in CIP is explained fairly
well by the present theory with much smaller value of coupling
strength, of the order of 0.1 eV. In order to understand the
relative contribution of kd to the total rate constant k, we have
also plotted kd in Figure 1.

Along with the results on ET rates, it would be of interest to
look at the behavior of the intermediate quantities, the diffu-
sivities D(Z, t) and D(Z). The calculated values of D(Z, t/) for
τ ) τv ) τs ) 0.3 ps at T ) 300 K are plotted in Figure 2
against the scaled time t/ ()t/τ) for different values of Z. It is
clear from the figure that D(Z, t) is strongly dependent on Z at
small time but is only weakly dependent on Z at long time.
Sumi and Marus10 and Tachiya and Murata16 in their one-
dimensional theory of ET proposed a simple exponential model
for D(Z, t) ()(2λs/�τs

2) exp(-t/τs)) containing only the param-
eters λs and τs whereas our expression of D(Z, t) (eq 35) contains
more parameters allowing for a nonexponential dependence on
time. Since the quantity D(Z) is explicitly appearing in the well
dynamics rate constant kd, it is also of interest to study the
variation of D(Z) as a function of Z. It is for this purpose that
we have plotted this quantity as a function of Z in Figure 3,
from which it is clear that D(Z) is sharply peaked near the
reaction zone and is otherwise weakly dependent on Z.

VI. Concluding Remarks

In this work, we have presented, using Zwanzig’s formalism,
a conceptually simpler and computationally economic one-
dimensional energy diffusion approach to study the ET reactions.
We derive an analytical expression for the rate of ET reactions
considering a general effective potential and an energy depend-
ent diffusivity. If one neglects the high frequency vibration mode
and the effect of energy dependent diffusivity, the present theory
reproduces the earlier rate expression shown in a previous
work14 for a harmonic effective potential. Therefore, an analyti-
cal expression derived here is more general. As an illustrative
example, we have considered here ET reactions for nonequi-
librium situation and derived an analytical expression for the

Figure 1. Plot of the total rate constant k of back electron transfer for
contact ion pairs (CIP) and the well dynamics rate constant kd as a
function of the free energy change (-∆G). The parameters used are τ
) 0.3 ps, νq ) 1014/s, λv ) λs ) 0.55 eV, λh ) 0.893 eV, J ) 0.1 eV
and T ) 300 K. The solid line (s) and the dotted line ( · · · ) correspond
to the calculated results for k and kd respectively. The experimental
data (b) correspond to the ET rate constant k and are taken from ref 8.

Figure 2. Plot of the calculated values of diffusivity D(Z, t/) vs time
t/ ()t/τ) for different values of Z. The value of ∆G used is -2.5 eV,
and values of all the other parameters used remain the same as in Figure
1. The plots are for various values of Z (in eV units): (1) -1.08, (2)
-1.18, (3) -1.28, (4) -1.38, (5) -1.48, (6) -1.58, (7) -1.68, (8)
-1.78, (9) -1.88, (10) -1.98.
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rate of ET where the total rate constant is explicitly dependent
on various physical parameters of the system. We are here able
to explain the rate of electron transfer reaction for CIP using
much smaller and reasonable values of the solvent reorganization
energy λs ()0.55 eV) and electron transfer integral J (of the
order of 0.1 eV), in contrast to the earlier works where the larger
values of λs ()1.5 eV) and J ()0.3 eV) had to be invoked to
explain the experimental results. In our earlier study,14 although
we had not considered the effect of high frequency vibration
mode and energy dependent diffusivity, we found a good
agreement of the calculated rate constant values of ET reaction
with the experimental results using the reorganization energy
values λs ) λv ) 0.75 eV which are still quite high for the two
low frequency modes Q and X. Although Gayathri and Bagchi13

have been able to explain the rate of the same ET reactions
using smaller values of the solvent reorganization energy λs and
electron transfer integral J, they evaluated the rate numerically
using multidimensional Smoluchowski equation which is very
cumbersome and highly involved whereas we have obtained
an analytical expression for the ET rate constant which is not
only easy to evaluate but also comprises many static and
dynamical parameters and hence, it is possible to predict the
rates of ET reactions in complex systems which are multidi-
mensional in nature. The investigation of two-dimensional ET
as a one-dimensional problem leading to an analytical expression

for the rate constant, as shown here, is however only illustrative,
and it is straightforward to use the present approach to formulate
the treatment of ET reactions involving more than two-
dimensional space as a one-dimensional problem and obtain
analogues of eqs 3 and 22. In the case of a delocalized sink,
one may replace the localized δ(γ) sink of eq 3 by a generalized
sink function19 S(γ). Although harmonic oscillator model is used
in this work, the theory developed is general and can be applied
to the general situation as well. In addition, the situation can
be further complicated when both the surfaces are multidimen-
sional in nature and ET does take place25 from the product to
the reactant surface. Such complex situations are often encoun-
tered in various experiments. It is of interest to develop a one-
dimensional theory for such complicated ET processes, and work
in this direction is in progress.
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Figure 3. Plot of the calculated values of D(Z) as a function of Z.
The value of ∆G used is -2.5 eV, and values of all the other parameters
used are the same as in Figure 1.
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